



## Reduced tillage and green manures

- Integrating reduced tillage and green manures for sustainable organic cropping systems

TilmanOrg



# A European Network

**TILMAN-ORG** 

## Aim of the project:

To design cropping systems that inhance productivity, use nutrients efficiently, show efficient weed management, increased biodiversity and lower carbon footprints.



#### Introduction

The overall goals of the project are to design improved organic cropping systems with enhanced productivity and nutrient use efficiency, more efficient weed management and increased biodiversity, but lower carbon footprints.

## Background

Reduced tillage and green manuring are environmentally friendly practices that increase levels of soil organic matter and biological activity, improve soil stability, and reduce fuel consumption. The avoidance of deep ploughing is successfully practised as no-tillage agriculture in conventional farming systems; however, these no-tillage systems rely on herbicides for weed control and mineral fertilisers for plant nutrients. The TILMAN-ORG project focuses on strategies for efficient weed management and improvement of nutrient management. In order to quantify the potential to contribute to climate change mitigation greenhouse gas emissions will be assessed.



# Benefits of the project

TILMAN-ORG will contribute to overcoming farmer concerns about the agronomic and economic viability of conservation agriculture systems, which is a major barrier to the wider adoption of reduced tillage and green manuring practices. It will provide new strategies for increasing yields while maintaining soil quality adapted to different crop production systems/rotations and pedoclimatic conditions found in Europe.

For society, TILMAN-ORG will contribute to stopping degradation of European agricultural soils, will enhance the C sequestration and storage potential of arable soils, and will lead to increased biodiversity in arable cropping systems at the below- and aboveground level..

For science, TILMAN-ORG will provide better estimates of how reduced tillage systems under organic farming management can mitigate climate change. The project will deliver scientifically validated decision-support tools, and guidelines on most suitable agronomic practices and approaches, techniques and technologies



### **Expected results**

TILMAN-ORG will contribute to summarise the existing knowledge and experiences on reduced tillage and green manures in organic systems in a wide range of soils and climates across Europe. It will improve weed control by integrating management techniques such as green manures, mechanical weeding and crop diversification, while evaluating impacts on weed diversity and their functional role in agro-ecosystems.

It will increase the efficiency of nutrient use by green manures (including N2-fixing legumes), thereby reducing off-farm inputs. It will help to calibrate the farmers' decision support tool NDICEA to assess the effects of reduced tillage options and green manuring on N cycling and C pools.

The project will design viable organic cropping systems applying reduced tillage and green manures at the farm level for major European regions.

## **Expected long-term impacts**

An expected long-term impact will be a functioning network of researchers and farmers to continue to develop reduced tillage techniques after the lifetime of TILMAN-ORG. Moreover the handbook of method elaborated in TILMAN-ORG will contribute to more standardized methods within the scientific community. The data base on results of long-term trials on reduced tillage, green manure and organic fertilization strategies will be in use also after project end. We expect that a considerable number of farmers convert at least to temporary reduced in their cropping systems and apply more strategically green manures. Moreover we assume that our research will have an influence on subsidies schemes at national and European level, where conservation techniques shall be intergrade in natural resource protection programs.

## Target groups

The project's dissemination activities will target farmers, advisors, and the scientific community, but also the agricultural support industries and policy makers. The main innovative strategy of the project is to adapt conservation agriculture approaches to organic farming drawing on existing field experiments and existing practical experiences across Europe.



#### Main activities

Optimum techniques for reduced tillage and green manures in organic systems will be identified using an integrated approach:

- Farmers' experiences and perceptions will be assessed. Existing data from medium and long-term trials provided by the consortium and the existing literature will be evaluated.
- 2. Experimental Case Studies will be carried out, and carbon stocks under reduced tillage compared to ploughing will be measured. Data from long-term tillage trials across Europe will be exploited to calibrate NDICEA, a decision support tool to predict soil organic carbon and nitrogen fluxes in the soil plant system.
- Design of optimised cropping systems by modelling approaches based on results from the literature and case studies.





#### Coordinator

Dr. Paul Mäder, Research Institute of Organic Agriculture, Switzerland E-mail: paul.maeder@fibl.org

#### **Partners**

Dr. Christophe David, ISARA Lyon, France Prof. Dr. Michael Schloter, Helmholtz Zentrum München, Germany Dr. Thorsten Haase, University of Kassel,

Germany Dr. Chris Koopmans, Louis Bolk Institute, The Netherlands

Ir. Wijnand Sukkel, Wageningen University and Research Centre, The Netherlands Ir. Koen Willekens, Institute for Agricultural and Fisheries Research, Belgium Scientific Director Lucien Hoffmann,

Public Research Center-Gabriel Lippmann, Luxembourg

Dr. Julia Cooper, Newcastle University, United Kingdom

Dr. Thomas Döring, The Organic Research Centre - Elm Farm, United Kingdom Prof. Dr. Anne Luik, Estonian University of Life Sciences, Estonia

Prof. Dr. Marc Mazzoncini, Centro Interdipartimentale di Ricerche Agro-Ambientali, Italy

Prof. Dr. Paolo Bàrberi, Scuola Superiore Sant'Anna, Italy

Prof. Dr. F. Xavier Sans Serra, Universitat de Barcelona, Spain

Director Andreas Kranzler, Research Institute of Organic Agriculture, Austria

#### Related projects

- KLINE-AG: Coop Fonds www.fibl.org/de/medien/medienarchiv/ medienarchiv11/medienmitteilung11/article/bio-ackerbauschont-das-klima.html
- BoFru: BLE, BÖL www.bodenfruchtbarkeit.org/
- NUE-CROPS: FP7 esearch.ncl.ac.uk
- NTOOLBOX: FP7 research.ncl.ac.uk
- AgTec-Org: CORE Organic Lagtec.coreportal.org
- ENDURE: FP6: www.endure-network.eu
- REDBIO: INTERR EG-EU www.redbio.net
- PEPITES : Agence National de la Recherche www.projet-pepites.org
- SIMBIOVEG: Ministero dell'Università e della Ricerca www.simbioveg.org:
- Bionet: BMLFU www.bio-net.at
- OPTIBIOGAZ: INTERREG IV-A Great Region www.optibiogaz.eu
- Interveg: CORE-Organic II orgprints.org/20084/1/COII\_Interveg\_Stefano\_Canali.pdf

#### Project dissemination

Our communication channels include: (a) the project website: www.tilman-org.net. The dissemination leader prepares text and audio visual media to the partners for adaption and dissemination at national level. Three articles in English, targeted to consumers/farmers/end users will be provided. (b) All articles in conference proceedings and peer reviewed publications will be archived on Organic Eprints, (c) a project brochure, (d) technical leaflets to be translated/adapted to national conditions.

#### How to reach the endusers

The assessment of farmers' experiences and perceptions is an important part of the project. These practical experiences will be an important part for dissemination and completed with the findings of the literature, experimental case studies and the modelling approaches. A technical leaflet will provide a synthesis of all aspects.

#### **Further information**

This project is funded via the ERA-net CORE Organic II by national funds to each partner. CORE Organic II is a collaboration between 21 countries on initiating transnational research projects in the area of organic food and farming. In 2011, CORE Organic II selected this project and 10 more for funding.

Read more about the project at: http://www.tilman-org.net/ or at the CORE Organic website: http://www.coreorganic2.org/TILMAN-ORG and in Organic Eprints: http://orgprints.org/view/projects/TILMAN-ORG.html